Airway, Sleep, Tethered Oral Tissues, Myofunctional Therapy

Lingual frenuloplasty with myofunctional therapy: Exploring safety and efficacy in 348 cases
https://onlinelibrary.wiley.com/doi/10.1002/lio2.297

Toward a functional definition of ankyloglossia: validating current grading scales for lingual frenulum length and tongue mobility in 1052 subjects
https://pubmed.ncbi.nlm.nih.gov/28097623/

Determinants of probable sleep bruxism in a pediatric mixed dentition population: a multivariate analysis of mouth vs. nasal breathing, tongue mobility, and tonsil size
https://www.sciencedirect.com/science/article/pii/S1389945720304998?dgcid=coauthor

Assessment of posterior tongue mobility using lingual-palatal suction: progress toward a functional definition of ankyloglossia.
https://onlinelibrary.wiley.com/doi/full/10.1111/joor.13144

Lacking Consensus: The Management of Ankyloglossia in Children
https://pubmed.ncbi.nlm.nih.gov/33137275/


Fluoride

Water Fluoridation: A Critical Review of the Physiological Effects of Ingested Fluoride as a Public Health Intervention
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3956646/

Prevention of Caries and Dental Erosion by Fluorides-A Critical Discussion Based on Physico-Chemical Data and Principles
https://pubmed.ncbi.nlm.nih.gov/35049604/

FLUORIDE IQ STUDIES: # OF PARTICIPANTS

* Credit To Fluoride Action Network

The following are two Tables that contain the number of participants in the fluoride IQ studies.

Table 1 contains the information from the 74 studies that found an association of fluoride exposure with the lowering of IQ. Participants included: 27,174 children and 689 adults.

Table 2 contains the information from the 8 studies that found no association of fluoride exposure and the lowering of IQ. Particpants included 4,047 children and 1,037 adults (who were tested both as children and again at age 38).

TABLE 1: Number of participants in 74 studies reporting an association of fluoride exposure and the lowering of IQ

Year IQ Study # Lead Author # of Children Ages of Children Sub-total
CHILDREN
# and Ages of Adults Sub-total
ADULTS
2020

Study
available
Jan 2022 on PubMed

68 Prabhakar 120 8-10 27,174
2021 74 Yani 100 6 – 12 27,054
2021 73 Ren 444 adults over 60 years of age 689
2021 72 Wang 709 6.7 – 13 26,954
2021 71 Cantoral 103 12 -24 months 26,245
2021 70 Yu 952 7-13 26,142
2021 69 Zhao 567 6-11 25,190
2020 67 Xu 633 7-13 24,623
2020 66 Lou 99 8-12 23,990
2019 65 Till 398 3 – 4 23,891
2019 64 Wang 571 7 – 13 23,493
2019 63 Green 512 3 – 4 22,922
2018 62 Cui 323 7 – 16 22,410
2018 61 El Sehmawy 1,000 4.6 – 11 22,087
2018 60 Induswe 269 13 – 15 21,087
2018 59 Mustafa 775 Primary school students 20,818
2018 58 Pang 268 8 – 12 20,043
2017 57 Chang 118 up to 12 months 19,775
2017 56 Jin 284 8 – 12 19,657
2017 54 Razdan 219 12 – 14 19,373
2018 54 Yu 2,886 7 – 13 19,154
2017 53 Bashash 299 4 and 6 – 12 16,268
2107 52 Valdez Jiménez 65 3 – 15 months 15,969
2016 51 Das 149 6 – 18 15,904
2016 50 Aravind 288 10-12 15,755
2016 49 Mondal 40 10-14 15,467
2015 48 Khan 429 6 – 12 15,427
2015 47 Sebastian 405 10 – 12 14,998
2015 46 Kundu 200 8 – 12 14,593
2015 45 Choi 51 7.1 = Average age 14,393
2015 44 Zhang 180 11 = Average age 14,342
2014 43 Bai 303 8 – 12 14,162
2014 42 Wei 741 8 – 12 13,859
2013 41 Nagarajappa 100 8 – 10 13,118
2013 40 Singh 42 9 – 14 13,018
2014 39 Karimzade 39 9 – 12 12,976
2012 38 Trivedi 84 6th – 7th graders 12,937
2012 37 Seraj 293 6 – 11 12,853
2012 36 Saxena 173 5th – 6th graders 12,560
2011 35 Ding 331 7 – 14 12,387
2011 34 Poureslami 120 7 – 9 12,056
2011 33 Eswar 133 12 – 14 11,936
2011 32 Shivaprakash 160 7 – 11 11,803
2009 31 Sudhir 1,000 13 – 15 11,643
2009 30 Li 80 8 – 12 10,643
2007 29 Rocha-Amador 132 6 – 10 10,563
2007 28 Wang 720 8 – 12 10,431
2007 27 Trivedi 190 12 – 13 9,711
2007 26 Fan 79 7 – 14 9,521
2006 25 Seraj 126 “children”
Ages not provided in English abstract
9,442
2005 24 Wang 226 7 – 12 9,316
2003 23 Xiang 512 8 – 13 9,090
2003 22 Li 936 6 – 13 8,578
2003 21 Shao # Adults: 88
Ages:
30 – 50
245
2001 20 Wang 513 8 – 12 7,642
2001 19 Hong 205 8 – 14 7,129
2000 18 Lu 118 10 – 12 6,924
1998 17 Zhang 164 4 – 10 6,806
1997 16 Yao 823 7 – 14 6,642
1996 15 Yao 536 8 – 12 5,819
1996 14 Zhao 320 7 – 14 5,283
1996 13 Wang 230 4 – 7 4,963
1995 12 Duan # Adults: 157
Ages:
35 – 62
157
1995 11 Li 907 8 – 13 4,733
1994 10 Xu 330 9 – 14 3,496
1994 9 Li 158 12 – 13 3,166
1994 8 Yang 60 8 – 14 3,008
1992 7 An 242 7 – 16 2,948
1991 6 Lin 749 7 – 14 2,706
1991 5 Guo 121 7 – 13 1,957
1991 4 Chen 640 7 – 14 1,836
1991 3 Sun 420 6.5 – 12 1,196
1990 2 Qin 447 9 – 10.5 776
1989 1 Ren 329 8 – 14 329

 

TABLE 2: Number of participants in 8 studies reporting NO association of fluoride exposure and the lowering of IQ

Year IQ Study # Lead Author # of Children Ages of Children Sub-total
CHILDREN
# and Ages of Adults
2019 #8 Soto-Barreras 161 9 – 10 4,047
2015 #7 Broadbent 1,037 7 – 13 3,886 # 1,037
Age: 38
2011 #6 Kang 268 Not available 2,849
2010 #5 Li 676 7 – 10 2,581
2010 #4 He 200 8 – 12 1,905
2000 #3 Calderon 61 6 – 8 1,705
1998 #2 Spittle 1,265 8 – 9 1,644
1989 #1 Hu 379 Not available 379  # and Ages are not available

Hydroxyapatite

Impact of a toothpaste with microcrystalline hydroxyapatite on the occurrence of early childhood caries: a 1‑year randomized clinical trial
https://www.nature.com/articles/s41598-021-81112-y.pdf

Effect of nano-hydroxyapatite toothpaste on microhardness of artificial carious lesions created on extracted teeth
https://pubmed.ncbi.nlm.nih.gov/28413590/

Comparative efficacy of a hydroxyapatite and a fluoride toothpaste for prevention and remineralization of dental caries in children
https://www.nature.com/articles/s41405-019-0026-8

Hydroxyapatite in Oral Biofilm Management
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6777166/

Comparison between Fluoride and Nano-hydroxyapatite in Remineralizing Initial Enamel Lesion: An in vitro Study
https://pubmed.ncbi.nlm.nih.gov/29603704/

Biomimetic hydroxyapatite and caries prevention: a systematic review and meta-analysis
https://pubmed.ncbi.nlm.nih.gov/34925515/


Oral Microbiome And Systemic Health

REFERENCES

Scannapieco, F. (2013) The Oral Microbiome: Its Role in Health and in Oral and Systemic Infections, Clinical Microbiology Newsletter, 35(20):163-179
Dye, B. (2012) Global periodontal disease epidemiology. Periodontol 2000 58(1):10-25
Paster, B., et al. (2001) Bacterial diversity in human subgingival plaque. Journal of bacteriology 183:3770-83
Devine, D., et al. (2009) Prospects for the development of probiotics and prebiotics for oral applications. Journal of Oral Microbiology 1:1
Laleman, I., et al. (2014) Probiotics reduce mutans streptococci counts in humans: a systematic review and meta-analysis. Clin Oral Investig. 18:1539-52
Hasslöf, P., et al. (2013) Early intervention with probiotic Lactobacillus paracasei F19 has no long-term effect on caries experience. Caries Res. 47:559-65
Killian, M., et al. (2016) The oral microbiome – an update for oral healthcare professionals. Br Dent J. 221(10):657-666
Marsh, P. (2006) Dental plaque as a biofilm and a microbial community – implications for health and disease. BMC Oral Health 6 Suppl 1:S14
Beck, J., et al. (2005) Systemic effects of periodontitis: epidemiology of periodontal disease and cardiovascular disease. J Periodontol 76:2089-100
Xiong, X., et al. (2006) Periodontal disease and adverse pregnancy outcomes: a systematic review. Brit J Obstet Gynaecol 113:135-43
Martin-Cabezas, R., et al. (2016) Clinical efficacy of probiotics as an adjunctive therapy to non-surgical periodontal treatment of chronic periodontitis: a systematic review and meta-analysis. J Clin Periodontol. 43(6):520–30
Gruner, D., et al. (2016) Probiotics for managing caries and periodontitis: systematic review and meta-analysis. J Dent. 48:16– 25